A criterion for a central simple algebra to be split

نویسندگان

  • Giordano Favi
  • Emmanuel Lequeu
چکیده

In these notes we give a criterion for a central simple algebra A to be split in terms of the essential dimension of the algebraic group SL1(A). This criterion also provides an example of an algebraic group G with ed(G) = n which does not possess any non-trivial cohomological invariant. 2000 Mathematics Subject Classification: 11E72, 16K20.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On descent for coalgebras and type transformations

We find a criterion for a morphism of coalgebras over a Barr-exact category to be effective descent and determine (effective) descent morphisms for coalgebras over toposes in some cases. Also, we study some exactness properties of endofunctors of arbitrary categories in connection with natural transformations between them as well as those of functors that these transformations induce between co...

متن کامل

Universal Central Extension of Current Superalgebras

Representation as well as central extension are two of the most important concepts in the theory of Lie (super)algebras. Apart from the interest of mathematicians, the attention of physicist are also drawn to these two subjects because of the significant amount of their applications in Physics. In fact for physicists, the study of projective representations of Lie (super)algebras  are very impo...

متن کامل

Decomposition of Involutions on Inertially Split Division Algebras

Let F be a Henselian valued field with char(F ) 6= 2, and let S be an inertially split F -central division algebra with involution σ∗ that is trivial on an inertial lift in S of the field Z(S). We prove necessary and sufficient conditions for S to contain a σ∗stable quaternion F -subalgebra, and for (S, σ∗) to decompose into a tensor product of quaternion algebras. These conditions are in terms...

متن کامل

A History of Selected Topics in Categorical Algebra I: From Galois Theory to Abstract Commutators and Internal Groupoids

This paper is a chronological survey, with no proofs, of a direction in categorical algebra, which is based on categorical Galois theory and involves generalized central extensions, commutators, and internal groupoids in Barr exact Mal’tsev and more general categories. Galois theory proposes a notion of central extension, and motivates the study of internal groupoids, which is then used as an a...

متن کامل

On φ-Connes amenability of dual Banach algebras

Let φ be a w-continuous homomorphism from a dual Banach algebra to C. The notion of φ-Connes amenability is studied and some characterizations is given. A type of diagonal for dual Banach algebras is dened. It is proved that the existence of such a diagonal is equivalent to φ-Connes amenability. It is also shown that φ-Connes amenability is equivalent to so-called φ-splitting of a certain short...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004